Мозг зомби - Страница 61


К оглавлению

61

И тут мы подходим к критическому моменту взлома мозга. Заметьте, что шаги 2–3 формируют петлю, такую же, как петли, описанные в главе 3, когда мы рассказывали про базальные ганглии. Бледный шар тормозит субталамическое ядро, что, в свою очередь, снова включает бледный шар. Если время потеряно в шаге 1 из-за нехватки дофамина, тогда эта петля не срабатывает и субталамическое ядро хронически включает ингибиторные клетки черной субстанции. Это значит, что таламус хронически выключен.

Этот ключевой момент в петле – самая легковзламываемая часть цепочки. При DBS хирурги имплантируют маленький электрод в субталамическое ядро. Когда он включен, он убирает все дисфункциональные сигналы, которые поступают в ядро, затрудняя его работу. Оно теряет хватку, которой удерживает бледный шар, что, в свою очередь, освобождает таламус, который снова выключает кору.

Электрод размером в несколько миллиметров способен дать пациентам с болезнью Паркинсона возможность буквально выключать их симптомы нажатием кнопки (Perlmutter S., Mink J.W., 2006). Используя прибор, который имплантирован в грудь больного, врачи (или он сам) могут пользоваться рубильником, который включает или выключает электрод. В идеале, если операция успешна (к сожалению, это срабатывает не всегда), почти тут же исчезают тремор, медлительность и перепады настроения.

Как насчет других форм контроля? Может ли DBS использоваться не только для снижения симптомов?

В статье, опубликованной в 2002 г., Талвар и соавторы сообщили о результатах исследования, в котором они использовали похожую форму нейростимуляции, чтобы на расстоянии управлять крысой. В этом эксперименте ученые имплантировали три электрода в мозг крысы. Один электрод был вживлен в область, которая отвечает за чувство вознаграждения. Когда исследователи включали этот стимулятор, крысе было приятно. Два других электрода были помещены в области мозга, которые обрабатывают информацию от левых и правых вибрисс. Если ученые хотели, чтобы крыса повернула налево, они стимулировали поле левых вибрисс (область мозга, которая чувствует стимулы от левых вибрисс) и электрод вознаграждения. Словно по команде животное поворачивало налево. Если они хотели, чтобы крыса двигалась вперед, они давали легкую стимуляцию, когда она бежала вперед. Если они хотели, чтобы она остановилась, они стимулировали ее, только когда она останавливалась.

Вуаля! Наука создала животное-робота. С помощью этого хитроумного контроля нейростимуляции исследователи были способны помочь крысе двигаться в очень сложной среде, просто поощряя ее двигаться вправо, влево или вперед.

Применят ли эту технологию когда-нибудь для создания контролируемых на расстоянии зомби, которые будут повиноваться нашей воле? Излечит ли однажды похожий стимулятор симптомы СДСГ?

К сожалению, скорее всего нет. На то есть три причины. Во-первых, пока не существует настоящих зомби, чтобы проверить на них систему. Во-вторых, время и деньги, которые потребуются для вживления электродов, чтобы на расстоянии контролировать зомби, сделают это непомерно затратным. Необходима более дешевая и гибкая технология, чтобы выполнить такого рода операцию в ситуации, когда нахождение еды и укрытия занимает целый день. Наконец, как мы сказали в начале этой главы, СДСГ – очень сложное состояние, которое затрагивает многие зоны мозга. Его природа не так проста, как обычная утрата дофамина. Поэтому вживленный в мозг зомби электрод не поможет вернуть мертвеца в нормальный человеческий вид.

Но что, если бы существовала дешевая технология, которая снизила бы только один симптом, скажем, подавила бы импульсивность, которая возникает из-за повреждения орбитофронтальной области при СДСГ, возможно ли это?

Что ж, да. Наука это может.

Восстановление функционирования орбитофронтальной области у зомби может потребовать больше «мощности», чем крошечные электроды при DBS. Для этого нужно активизировать всю корковую область, используя нечто вроде транскраниальной стимуляции постоянным током (transcranial direct current stimulation, tDCS) – по сути, длинный термин для девятивольтной батареи, двух проводов и двух губок. Да, все верно, прибор так прост, что можно собрать его в гараже.

НО НЕ ПЫТАЙТЕСЬ ДЕЛАТЬ ЭТО ДОМА!

Чтобы использовать tDCS, на скальп подают малый ток с помощью двух губок, связанных с батареей. Электрический ток течет между этими двумя губками и стимулирует нервную ткань между ними. Область сильного позитивного тока (анод) возникает там, где помещена одна губка, а область негативного тока (катод) возникает на другой губке. Спустя некоторое время после стимуляции анодом нейроны, расположенные под губкой, становятся более возбужденными. Это значит, что они более склонны выдавать потенциалы действия и более чувствительны к новым стимулам. Напротив, катод делает область под своей губкой менее возбудимой и менее чувствительной к новой входящей информации.

Для простоты представьте, что анод «включает» область, а катод – «выключает». Меняет ли это функционирование мозга? Полностью!

Недавно Пол Малкини и его исследовательская команда в Австралии решили проверить, улучшит ли tDCS навыки рабочей памяти нормальных здоровых взрослых. Для этого они наложили анод tDCS на дорсолатеральную префронтальную кору, которая, как известно, связана с рабочей памятью (см. главу 10). Они обнаружили, что испытуемые, которые получали стимуляцию в дорсолатеральную префронтальную кору, запоминали то, что они видели, лучше, чем участники без стимуляции мозга.

61